Canine MCSF Receptor/CSF1R/CD115 Gene ORF cDNA clone expression plasmid,N terminal Myc tag

Catalog Number:MGE738-NM

Gene
Species
Canine
NCBI Ref Seq
RefSeq ORF Size
2904bp
Gene Synonym
CSF1R
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Canine colony stimulating factor 1 receptor Gene ORF cDNA clone expression plasmid,N terminal Myc tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-Myc
Restriction Site
Protein Tag
Myc
Tag Sequence
GAGCAGAAACTCATCTCAGAAGAGGATCTG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
Myc Tag Information

A myc tag is a polypeptide protein tag derived from the c-myc gene product that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild type protein expressed by the host organism. It can also be used in the isolation of protein complexes with multiple subunits.

A myc tag can be used in many different assays that require recognition by an antibody. If there is no antibody against the studied protein, adding a myc-tag allows one to follow the protein with an antibody against the Myc epitope. Examples are cellular localization studies by immunofluorescence or detection by Western blotting.

The peptide sequence of the myc-tag is: N-EQKLISEEDL-C (1202 Da). It can be fused to the C-terminus and the N-terminus of a protein. It is advisable not to fuse the tag directly behind the signal peptide of a secretory protein, since it can interfere with translocation into the secretory pathway.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
M-CSFR encoded by the proto-oncogene c-fms is the receptor for colony stimulating factor 1 (CSF1R), a cytokine involved in the proliferation, differentiation, and activation of macrophages. This cell surface glycoprotein is consisted by an extracellular ligand-binding domain, a single membrane-spanning segment, and an intracellular tyrosine kinase domain. Binding of CSF1 activates the receptor kinase, leading to "autophosphorylation" of receptor subunits and the concomitant phosphorylation of a series of cellular proteins on tyrosine residues. CSF1R is a tyrosine kinase receptor that is absolutely required for macrophage differentiation and thus occupies a central role in hematopoiesis. CSF1 and its receptor (CSF1R, product of c-fms proto-oncogene) were initially implicated as essential for normal monocyte development as well as for trophoblastic implantation. This apparent role for CSF1/CSF1R in normal mammary gland development is very intriguing because this receptor/ligand pair has also been found to be important in the biology of breast cancer in which abnormal expression of CSF1 and its receptor correlates with tumor cell invasiveness and adverse clinical prognosis. Tumor cell expression of CSF1R is under the control of several steroid hormones (glucocorticoids and progestins) and the binding of several bHLH transcription factors, while tumor cell expression of CSF-1 appears to be regulated by other hormones, some of which are involved in normal lactogenic differentiation. However, studies have demonstrated that CSF1 and CSF1R have additional roles in mammary gland development during pregnancy and lactation. The role of CSF1 and CSF1R in normal and neoplastic mammary development that may elucidate potential relationships of growth factor-induced biological changes in the breast during pregnancy and tumor progression.
References
  • Sherr CJ. (1990) The colony-stimulating factor 1 receptor: pleiotropy of signal-response coupling. Lymphokine Res. 9(4): 543-8.
  • Kacinski BM. (1997) CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev. 46(1): 71-4.
  • Sapi E, et al. (1999) The role of CSF-1 in normal and neoplastic breast physiology. Proc Soc Exp Biol Med. 220(1): 1-8.
  • Sapi E. (2004) The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med (Maywood). 229(1): 1-11.
  • Bonifer C, et al. (2008) The transcriptional regulation of the Colony-Stimulating Factor 1 Receptor (csf1r) gene during hematopoiesis. Front Biosci. 13: 549-60.
  • TOP